

English

BGA6130

400 MHz to 2700 MHz 1 W high efficiency silicon amplifier

The BGA6130 MMIC is a one-stage amplifier, offered in a low-cost leadless surface-mount package. At 3.6 V it delivers 29.5 dBm output power at 3 dB gain compression with efficiency higher than 55 %. Its power saving features include simple quiescent current adjustment, which allows class-AB operation and logic-level shutdown control to reduce the supply current to 4 µA.

Features and benefits

- 400 MHz to 2700 MHz frequency operating range
- Integrated active biasing
- External matching allows broad application optimization
- Efficiencies higher than 55 %
- 3.6 V single supply operation
- Power-down
- Excellent robustness

Applications

- Broadband CPE / MoCA
- WLAN / ISM / RFID
- Wireless Sensor Networks
- Industrial applications
- Satellite Master Antenna TV (SMATV)
- Parametric search all Medium power amplifiers

All information on this product information page is subject to the subsequent disclaimers:

- General product disclaimer
- Quality and reliability disclaimer

Parametrics of this product

Parameter	Conditions	Min	Typ/Nom	Max	Unit
eteristics					
supply current	V _{SUP} = 8 V	50	70	90	mA
supply voltage		3.3	3.6	3.9	V
frequency range		400		2700	MHz
ristics					
power gain	f = 434 MHz; V _{SUP} = 3.6 V	14	17	20	dB
power gain	f = 915 MHz; V _{SUP} = 3.6 V	11	14	17	dB
output power at 1 dB gain compression	f = 434 MHz; I _{SUP} = 70 mA; V _{SUP} = 3.6 V	25	28		dBm
output power at 1 dB gain compression	f = 915 MHz; I _{SUP} = 70 mA; V _{SUP} = 3.6 V	26	29		dBm
noise figure	f = 434 MHz		4.5		dB
noise figure	f = 915 MHz		4		dB
efficiency	f = 434 MHz		56		%
-#-i	f = 915 MHz		60		%
	teristics supply current supply voltage frequency range istics power gain power gain output power at 1 dB gain compression output power at 1 dB gain compression noise figure noise figure	teristics supply current V _{SUP} = 8 V supply voltage frequency range istics power gain f = 434 MHz; V _{SUP} = 3.6 V power gain f = 915 MHz; V _{SUP} = 70 mA; V _{SUP} = 3.6 V output power at 1 dB gain compression f = 915 MHz; I _{SUP} = 70 mA; V _{SUP} = 3.6 V output power at 1 dB gain compression f = 915 MHz; I _{SUP} = 70 mA; V _{SUP} = 3.6 V output power at 1 dB gain compression f = 915 MHz; I _{SUP} = 70 mA; V _{SUP} = 3.6 V output power at 1 dB gain compression f = 915 MHz; I _{SUP} = 70 mA; V _{SUP} = 3.6 V output power at 1 dB gain compression f = 915 MHz; I _{SUP} = 70 mA; V _{SUP} = 3.6 V output power at 1 dB gain compression f = 434 MHz	teristics supply current V _{SuP} = 8 V 50 supply voltage 3.3 frequency range 400 isitics power gain f = 434 MHz; V _{SuP} = 3.6 V 14 power gain f = 915 MHz; V _{SuP} = 3.6 V 11 output power at 1 dB gain compression f = 434 MHz; I _{SuP} = 70 mA; V _{SuP} = 3.6 V 25 output power at 1 dB gain compression f = 915 MHz; I _{SuP} = 70 mA; V _{SuP} = 3.6 V 26 noise figure f = 434 MHz	teristics supply current V _{SUP} = 8 V 50 70 supply voltage 3.3 3.6 frequency range 400 isitics power gain f = 434 MHz; V _{SUP} = 3.6 V 14 17 power gain f = 915 MHz; V _{SUP} = 3.6 V 11 14 output power at 1 dB gain compression f = 434 MHz; I _{SUP} = 70 mA; V _{SUP} = 3.6 V 25 28 output power at 1 dB gain compression f = 915 MHz; I _{SUP} = 70 mA; V _{SUP} = 3.6 V 26 29 output power at 1 dB gain compression f = 915 MHz; I _{SUP} = 70 mA; V _{SUP} = 3.6 V 26 29 output power at 1 dB gain compression f = 915 MHz; I _{SUP} = 70 mA; V _{SUP} = 3.6 V 26 29 output power at 1 dB gain compression f = 915 MHz; I _{SUP} = 70 mA; V _{SUP} = 3.6 V 26 29 output power at 1 dB gain c	teristics supply current V _{SuP} = 8 V 50 70 90 supply voltage 3.3 3.6 3.9 frequency range 400 2700 isitics power gain f = 434 MHz; V _{SuP} = 3.6 V 14 17 20 power gain f = 915 MHz; V _{SuP} = 3.6 V 11 14 17 20 power at 1 dB gain compression f = 434 MHz; I _{SuP} = 70 mA; V _{SuP} = 3.6 V 25 28 18 output power at 1 dB gain compression f = 915 MHz; I _{SuP} = 70 mA; V _{SuP} = 3.6 V 25 28 output power at 1 dB gain compression f = 915 MHz; I _{SuP} = 70 mA; V _{SuP} = 3.6 V 26 29 noise figure f = 434 MHz 4.5 4.5 efficiency f = 915 MHz 4 4 efficiency

Similar products

- Parametric search all Medium power amplifiers
- Parametrics series

Products / Packages

Type number	Orderable part number	Ordering code (12NC)	Product status	Package	Packing	Marking
BGA6130	BGA6130,118	9352 948 92118	Development	SOT908-3 (HVSON8)	Reel Pack, SMD, 13"	Standard Marking

Pinning information

Pin	Symbol	Description	Simplified outline	Graphic symbol
1	n.c.	not connected		
2	RF_OUT	radio frequency output		_
3	RF_OUT	radio frequency output	FREEZE	
4	n.c.	not connected		
5	V _{CC}	bias supply voltage		4
6	ENABLE	enable	S. E.	
7	RF_IN	radio frequency input		Lea-ed
8	ICQ_ADJ	quiescent collector current adjustment by an external resistor		
	GND	exposed die pad		

Quality, reliability & chemical content

Type number	r Orderable part number	Chemical content	RoHS	Leadfree conversion date	RHF	IFR (FIT)	MTBF (hours)	MSL	MSL LF
BGA6130	BGA6130,118	BGA6130	EU/CN ROHSCOMPLIANT 2 PD	Always Pb-free	D			1	1

Quality and reliability disclaimer

Documentation for this product

Туре	Format	Title	Date
Selection guide	pdf	NXP's RF Manual 15th edition (v.1.0)	2011-05-19

Ordering & availability

Type number	Ordering code(12NC)	Orderable part number	Region	Distributor	In stock	Order quantity	Inventory date	Buy online	Samples
BGA6130	9352 948 92118	BGA6130,118							not available

Sample

Sample orders normally take 2-4 days for delivery.

If you do not have a direct account with NXP our network of global and regional distributors is available and equipped to support you with NXP samples. As a NXP customer you also have the option to order samples via our sales organisation.

Demo boards

OM7828

BGA6130 medium power amplifier evaluation kit

Technical support

Do you want to ask technical questions to an NXP expert? Please select one of the following options:

- Use our e-mail form to ask a question
- Find answers in our technical support site.